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a b s t r a c t

The strategy for the control of vehicle platooning is proposed and tested on different mobile robot
platforms. The decentralized platooning is considered, i.e. a virtual train of vehicles where each vehicle
is autonomous and decides on its motion based on its own perceptions. The following vehicle only
has information about its distance and azimuth to the leading vehicle. Its position is determined using
odometry. The reference position and the orientation of the following vehicle are determined by the
estimated path of the leading vehicle in a parametric polynomial form. The parameters of the polynomials
are determined using the least-squares method. This parametric reference path is also used to determine
the feed-forward part and to suppress tracking errors by a feed-back part of the applied globally stable
nonlinear control law. The results of the experiment and simulations demonstrate the applicability of the
proposed algorithm for vehicle platoons.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Vehicle platoon systems are a promising approach for new
transportation systems [1] because of their innovative capabilities.
Their main goals when applied to passenger cars are an increase
in the vehicle density on the highway (i.e. avoiding traffic jams),
and security improvements in new passenger transportation
services in urban environments thanks to automated or semi-
automated driving assistance (adaptive cruise control, obstacle
detection and avoidance, automatic car parking, etc.). Most of
these platooning systems are based on a linear configuration (i.e. a
virtual train of vehicles). A basic problem in platoon systems
is the control of the vectorial inter-vehicle distance. Some of
the most spread approaches are based on automatic control.
In this frame, the control of global platoon geometry has been
decomposed into different sub-problems: longitudinal control
(distance regulation), lateral control (angle regulation), integrated
lateral and longitudinal control and merge/split capabilities. Most
of the lateral or longitudinal control proposals are based on
PID control [1–4] or other regulation-loop-based methods such
as control based on linearization methods in [5] or fuzzy logic
control in [6,7]. From the industrial point of view, Automatic
Cruise Control (ACC), introduced by Mercedes-Benz in 1998,
deals with longitudinal control and Lane Keeping Assist System
(AFIL), developed by Citroen, deals with lateral control. Integrated
longitudinal and lateral control has also attracted research as in [8,
9] and in [10,11] where physics-inspired models were used or
Multi-Agent System modelling as in [12]. Finally, platoon systems
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should have merge and split capabilities. Merge consists in adding
a vehicle to the train and split consists in removing a vehicle from
the train. In the literature, examples can be found dealing with
merging and splitting from an already well formed linear platoon
running on a highway [13,14].

Regarding the perception vehicles platoons classify into two
main categories: local approaches [15,16] and global approaches
[17,18]. Local approaches usually react to current relative sensor
information only as opposed to global approaches where global
positions of vehicles as well as the course of the reference path are
known.

In this work research results about a platoon of nonholonomic
vehicles using a nonlinear globally stable trajectory tracking
control law are presented. The novelties of the proposed approach
with respect to our previously publishedwork [19] are: application
of the nonlinear globally stable control law in a platoon of
nonholonomic vehicles, completely local approach where only
the leader relative position is required (in [19] also the global
robot orientationmeasurement (e.g. compass) needs to be known),
comparison of platoon approach using constant inter-vehicle
spacing and approach using constant inter-vehicle time (time-
headway), and error propagation analysis in the platoon which
gives some measure on limitations of the used strategy and
validation of the approach on experiments with local stereo
camera sensor. The vehicle platooning control strategy relies
on relative information to preceding vehicles only, therefore no
explicit inter-vehicle data exchange and global information (such
as GPS) are required. The important advantage here is that relative
information can be measured with low cost sensor sets.

The aspects of integration of merging and splitting capabilities
and obstacle avoidance to the platoon are already discussed in our
previous work [19]. The main difference of the proposed approach
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compared to other local approaches is the capability of each vehicle
to estimate the trajectory of the vehicle in front of it and follow
this estimated trajectory instead of reacting to current sensor
information only. The trajectory shape can be arbitrary continuous
curve.

Mobile robots used in the work are nonholonomic systems
which have motion limitations resulting from their kinematic
model. Nonlinear globally stable control [20,21] is applied to follow
an arbitrary reference path with a predefined velocity profile. The
control structure consists of feed-forward control part and feed-
back control part. The feed-forward part is calculated from the
known trajectory while the feed-back control part takes care of
small tracking-error corrections due to disturbances, noise and
unmodelled dynamics.

The paper is organized as follows: The trajectory tracking
control law that can be applied to nonholonomic systems is
presented in Section 2. The application of the proposed control law
to platoon systems is derived in Section 3. The error accumulation
effect through the number of vehicles in the platoon for the
proposed approach is analyzed in Section 4. The results of the test
on different mobile robot platforms are presented in Section 5.

2. Trajectory tracking for nonholonomic vehicles

The kinematic model of the vehicle with differential drive is
given as followsẋ(t)

ẏ(t)
θ̇(t)

 =

cos θ(t) 0
sin θ(t) 0

0 1


·

[
v(t)
ω(t)

]
(1)

where v and ω are the tangential and the angular velocities of the
vehicle (following vehicle in Fig. 1), respectively.

It is very easy to show that the system (1) is flat [22] with flat
outputs being x and y. The flatness property enables the existence
of the open-loop control that achieves perfect tracking in the ideal
case of the vehicle dynamics described by (1). For a given smooth
reference trajectory (xr(t), yr(t)) defined in the time interval t ∈

[0, T ] the open-loop (or flatness-based) control (vff andωff ) can be
derived as

vff (t) =


ẋ2r (t) + ẏ2r (t) (2)

ωff (t) =
ẋr(t)ÿr(t) − ẏr(t)ẍr(t)

ẋ2r (t) + ẏ2r (t)
= vff (t)κ(t) (3)

where κ(t) is the reference path’s curvature. The necessary condi-
tion in the path-design procedure is a twice-differentiable path and
a nonzero tangential velocity vff (t) ≠ 0 at each time instant. The
reference robot pose is then given by qr(t) = [xr(t), yr(t), θr(t)]T ,
where θr(t) is trajectory tangent angle in point (xr(t), yr(t)).
Taking into account a given reference robot pose and the controls
from Eqs. (2) and (3), the following relation can be obtained:ẋr(t)

ẏr(t)
θ̇r(t)

 =

cos θr(t) 0
sin θr(t) 0

0 1


·

[
vff (t)
ωff (t)

]
. (4)

In Fig. 1 the reference vehicle is an imaginary vehicle that ideally
follows the reference path. In contrast, the real vehicle (when
compared to the reference vehicle) has some error when following
the reference path. The trajectory tracking error, expressed in
terms of the following vehicle, as shown in Fig. 1, is given by

e(t) =

ex(t)
ey(t)
eθ (t)



=

 cos θ(t) sin θ(t) 0
− sin θ(t) cos θ(t) 0

0 0 1


·

xr(t) − x(t)
yr(t) − y(t)
θr(t) − θ(t)


. (5)
Fig. 1. Illustration of the error transformation where the following vehicle follows
the path of the leading vehicle at distance L.

Differentiating Eq. (5) with respect to time and taking into
account the kinematic model given by Eq. (1), and the equivalent
kinematic model of the reference vehicle given by Eq. (4), the
following nonlinear error model of the system is obtained:

ėx(t) = ω(t)ey(t) + vff (t) cos(eθ (t)) − v(t)
ėy(t) = −ω(t)ex(t) + vff (t) sin(eθ (t))
ėθ (t) = ωff (t) − ω(t).

(6)

The control algorithm should be designed to force the vehicle
follow the reference path precisely. The nonlinear controller design
approach as proposed in [21,20] is used where global asymptotic
stability is shown using appropriate Lyapunov function [23]. The
nonlinear control law is as follows

v(t) = vff (t) cos eθ (t) + kx(t)ex(t)

ω(t) = ωff (t) + kyvff (t)
sin eθ (t)
eθ (t)

ey(t) + kθ (t)eθ (t)
(7)

where ky is a positive constant,while kx(t) and kθ (t) are continuous
positive bounded functions that will be discussed later on in the
paper.

3. Linear platoon control strategy

In the proposed control strategy each following vehicle
measures the distance D and the azimuth θa (relative to its
own orientation, see Fig. 1) to its leading vehicle. No additional
data communication between the leading and following vehicles
is available. The distance D and the azimuth θa are obtained
from local sensor sets (laser range scanner or stereo camera).
No other global information sensors (e.g. GPS) are required. The
only assumption is that the path of the first robot is feasible
to all the following robots which may have different kinematic
and dynamic constraints. All the positions are treated in a
coordinate system that is fixed to the ground. The following vehicle
determines its own pose using odometry. Having the current pose
X(k1t) = [x(k1t), y(k1t), θ(k1t)]T , the pose in the next sample
is determined by Euler integration

X((k + 1)1t) = X(k1t) + 1t

cos(θ(k1t)) 0
sin(θ(k1t)) 0

0 1

[
v(k1t)
ω(k1t)

]
(8)

where v(k1t) and ω(k1t) are the current translational and
angular speed of the vehicle, and 1t is the sample time.
However the vehicles pose estimation given in (8) is not limited
to differential drive kinematics only. For other robot types
(e.g. Ackerman steering) relation (8) needs to be updated with
robot kinematic as follows

X((k + 1)1t) = X(k1t) + 1tẊ(k1t)
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where Ẋ(k1t) = f(X(k1t),U(k1t)) is the robot kinematic model
andU(k1t) are the robot commands. As shown in [19] themethod
of integration and the associated errors in the accuracy of the
absolute position are not significant since only the relative position
information among vehicles (D and θa) is important. The latter
is always obtained from accurate relative sensors sets therefore
the integration error and errors due to wheels slipping does not
influence the servoing accuracy noticeably.

The path of the leading vehicle Xh(k1t) = [xh(k1t), yh(k1t)]T
is calculated by the following vehicle using its current position and
themeasurements of the distance D and the azimuth θa as follows:

Xh(k1t) =

[
x(k1t)
y(k1t)

]
+

[
cos

θ(k1t) + θa(k1t)


sin

θ(k1t) + θa(k1t)

]D(k1t). (9)

This information is stored in the memory and represented in
parametric form (with the parameter k—related to the time
t = k1t). Intermediate points are obtained by means of linear
interpolation

Xh(t) = Xh(k1t) +
t − k1t

1t
[Xh

(k + 1)1t


−Xh(k1t)] k1t ≤ t < (k + 1)1t. (10)

To estimate the leading robot pose the kinematic model of the
leading robot is not required and is therefore unknown to the
following robot.

Each following vehicle must track its leading vehicle (vehicle
in front) path either by constant inter-vehicle spacing policy or
by constant inter-vehicle time policy. Constant spacing approach
is compared to constant time approach more vulnerable to error
accumulation through the number of vehicles and consequently to
string stability problem but it has some practical benefits relating
to the vehicle size which can be considered implicitly by selecting
the desired inter-vehicle safety distance. Therefore a combination
of both approaches is usually used in applications. In the following
section both basic approaches are implemented in the platoon
control strategy.

3.1. Constant distance approach

The following vehicle is supposed to track the leading vehicle at
a distance L—measured on thepath of the leading vehicle as already
proposed in our previous work [19]. To estimate the path length,
the distance function Lh(t) that gives the distance travelled by the
leading vehicle is defined as

Lh(t) =

∫ t

0


ẋ2h(τ ) + ẏ2h(τ )dτ . (11)

The following vehicle should track the leading vehicle (9) at a
distance L, i.e. at the current time t0 it should follow the position of
the leading vehicle at t = T , where T is defined by

Lh(T ) =


Lh(t0) − L Lh(t0) ≥ L
0 Lh(t0) < L. (12)

More details on constant distance approach can be found
in [19].

3.2. Constant time approach

The following vehicle is supposed to track the leading vehi-
cle path with constant time delay Tf which means that inter-
vehicle distance L(t) varies depending on current leader vehicle
speed vh(t). Two extreme situations may appear as follows
limvh→0 L(t) = 0 and limvh→∞ L(t) = ∞ therefore this approach
is appropriate for situations where vh is bounded: 0 < vhmin ≤

vh(t) ≤ vhmax.
The appropriate reference point on the leading vehicle path (9)

is obtained as follows: at the current time t0 the following vehicle
should follow the position of the leading vehicle at t = t0 −Tf . The
reference position at time t is calculated using relation (10).

3.3. Reference pose and reference velocity estimation

To implement control law from (7) also first and second order
derivatives of the path in the determined reference point need
to be estimated. This is done by estimating path shape around
the reference point by parametric polynomial form. This step also
suppresses noise from the sensors due to data averaging.

To estimate path shape around the reference point the path of
the leading vehicle is expressed in the parametric polynomial form
in the interval [ts, te] where T ∈ [ts, te]:

x̂h(t) = ax2t
2
+ ax1t + ax0

ŷh(t) = ay2t
2
+ ay1t + ay0

(13)

where the functions x̂h(t) and ŷh(t) approximate the functions
xh(t) and yh(t), respectively, in the interval [ts, te]. The coefficients
of the polynomials axi and ayi (i = 0, 1, 2) are calculated using
the least-squares method with at least three samples around the
time T (six points were used in our experiments). The second order
polynomials (13) can successfully approximate the small piece of
the leading vehicle path (consisting only of a few samples around
the time T ) because of the small sampling time1t compared to the
vehicle driving dynamics. As alreadymentioned, the position error
due to dead reckoning (navigation with odometry) is not critical
in the proposed algorithm because only the relative information
(D and θa) between the leading and the following vehicle is
important. Moreover, in the short time window (a few samples
around T ) where polynomials (13) are estimated, these errors do
not significantly affect the trajectory estimation.

The reference pose (in Fig. 1 denoted as the reference vehicle)
of the following vehicle at the current time t0 is determined usingxr(t0)
yr(t0)
θr(t0)


=

x̂h(T )
ŷh(T )

θ̂h(T )



=


ax2T

2
+ ax1T + ax0

ay2T
2
+ ay1T + ay0

arctan
2ay2T + ay1
2ax2T + ax1

+ σ · sign(2ay2T + ay1)π

 (14)

where σ = 1 if (2ax2T + ax1) < 0 and σ = 0 if (2ax2T + ax1) ≥ 0
and sign(·) is signum function. The control law (7) is used for
reference tracking (following the path of the leading robot) in
a linear platoon. The required error vector is given according to
Eq. (5) and the feed-forward tangential and angular velocities of
the reference vehicle needed in (7) are calculated by

vff (t0) =


(2ax2T + ax1)2 + (2ay2T + ay1)2 (15)

and

ωff (t0) =
(2ax2T + ax1) × 2ay2 − (2ay2T + ay1) × 2ax2

(2ax2T + ax1)2 + (2ay2T + ay1)2
(16)

respectively.

4. Error propagation analysis

In the following the effect of error accumulation through the
number of vehicles in the platoon for the proposed approach is
analyzed. This phenomenon is very much related to the string
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stability. A platoon of vehicles is string stable if the range errors
decrease as they propagate along the vehicle stream [18]. It has
been shown that vehicle-to-vehicle communication is necessary
to achieve string stability with constant inter-vehicle spacing [18].
However, platoon with constant time-headway could be string
stable without additional communication.

In the following the error propagation through the platoon is
analyzed. Let us imagine a virtual platoon where vehicles drive
with zero time-headway. This means that the following vehicle
just tries to follow the preceding vehicle path (without any delay).
The reference for the following vehicle is actually the output of
the preceding one. If the control is designed in a way that the
tracking error of a single vehicle decreases with time from some
initial value, the error will also decrease through the vehicles in
the platoon. This statement also holds when the vehicles try to
follow thepath of the preceding vehicleswith some time-headway.
The only difference is that their reference is defined as a delayed
measurement of the preceding vehicle in such case.

In practical implementations the measurements are corrupted
by persistent disturbances. If the state transition matrix elements
of the error model are less than 1 at all times, the errors are not
amplified through the system. The output of a nth vehicle in the
platoon does not follow the reference pose of the first vehicle
asymptotically but the error remains bounded if the number of
vehicles is finite. In the following the state transition matrix
elements of the error model will be analyzed.

Inserting (7) into (6), the following error model is obtained:

ėx = ωff ey + kyvff
sin eθ

eθ

e2y + kθeyeθ − kxex

ėy = −ωff ex − kyvff
sin eθ

eθ

exey − kθexeθ + vff sin eθ

ėθ = −kyvff
sin eθ

eθ

ey − kθeθ .

(17)

It is impossible to analytically calculate the state transition matrix
of the nonlinear error system in (17) for the arbitrary values of
the control gains kx, ky, and kθ . In our case the gain scheduling
proposed in [21,20] is used:

kx(t) = 2ζωn(t), ωn(t) =


ω2

ff (t) + gv2
ff (t)

ky = g = const.

kθ (t) = 2ζωn(t), ωn(t) =


ω2

ff (t) + gv2
ff (t)

(18)

where g > 0 is an additional tuning parameter and ζ ∈ (0, 1) is a
desired damping coefficient.

Inserting (18) into (17) the nonlinear error model of the
controlled system can be obtained. For the purpose of analysis
a simpler model will be used which is obtained by linearization
of the nonlinear error model around the zero-error state (in this
case the terms with products among states drop out while sin eθ is
replaced by eθ ):

ė(t) =


−2ζωn(t) ωff (t) 0
−ωff (t) 0 vff (t)

0 −gvff (t) −2ζωn(t)


e(t) = A(t)e(t) (19)

where the time-varying matrix A(t) has been introduced.
The gain scheduling (18) was originally proposed for linear

controller design [21,20] and gives time-varying (but with
constant damping) eigenvalues of A(t) : −2ζωn(t), −ζωn(t) ±

jωn(t)


(1 − ζ 2). Such choice of parameters can also be used in
nonlinear control law (7) as it does not violate the constraints on
controller gains, but the eigenvalues interpretation is preserved.
Note that characteristic frequency ωn(t) has to be time-varying (it
changes as governed by vff (t) and ωff (t)) to prevent control gains
grow unbounded when the robot velocity tends to 0.
The problem of error propagation will first be solved for one
robot driving along simple trajectories (straight lines and circles).
If vff and ωff are constant, then ωn and A are also constant due to
(18) and (19) can be solved analytically:

e(t) = eAte(0) = Φ(t)e(0). (20)

The elements of the obtained state transition matrix Φ(t) are as
follows:

φ1,1(t) = −


ωff

ωn

2

e−ωr t

×


ζ

1 − ζ 2
sin(ωit) − cos(ωit) + e−ωr t


+ e−2ωr t

φ1,2(t) =

ωff
ωn

e−ωr t sin(ωit)
1 − ζ 2

φ1,3(t) =
ωff

ωn

vff

ωn
e−ωr t

×


ζ

1 − ζ 2
sin(ωit) − cos(ωit) + e−ωr t



φ2,1(t) = −

ωff
ωn

e−ωr t sin(ωit)
1 − ζ 2

φ2,2(t) = e−ωr t


ζ

1 − ζ 2
sin(ωit) + cos(ωit)



φ2,3(t) =

vff
ωn

e−ωr t sin(ωit)
1 − ζ 2

φ3,1(t) =
ωff

ωn
g
vff

ωn
e−ωr t

×


ζ

1 − ζ 2
sin(ωit) − cos(ωit) + e−ωr t



φ3,2(t) = −
g vff

ωn
e−ωr t sin(ωit)

1 − ζ 2

φ3,3(t) = −g


vff

ωn

2

e−ωr t

×


ζ

1 − ζ 2
sin(ωit) − cos(ωit) + e−ωr t


+ e−2ωr t

(21)

where ωr = ζωn and ωi = ωn

1 − ζ 2 are introduced for

the greater legibility. Note that several elements in (21) include
the function found in φ2,2(t). After observing that φ2,2(t)|t=0 =

1, φ̇2,2(t)|t=0 = 0, and φ̈2,2(t)|t=0 = −1 it can be concluded that
−1 < φ2,2(t) < 1 for any ζ ∈ (0, 1) and all t > 0. Another
important function in (21) is:

φs(t) =
e−ωr t sin(ωit)

1 − ζ 2
. (22)

The maximum of (22) for t > 0 can be obtained analytically:

sup
t>0

φs(t) = e
−

ζ√
1−ζ2

arctan

√
1−ζ2

ζ


. (23)

If we also recall from (18) thatω2
n = ω2

ff +gv2
ff it can be shown after

a simple analysis that for arbitrary vff > 0 andωff and any choice of
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Fig. 2. Real set-up experiment: small leading robot and Pioneer 3AT with stereo camera sensor as a follower (left) and the whole set-up with top camera for trajectory
tracking control of the smaller robot (right).
control law parameters g > 0 and ζ ∈ (0, 1) the following holds:

|φi,j(t)| < 1 t ∈ (0, ∞)

(i, j) ∈ {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)}. (24)

In the following only the remaining elements of Φ(t) that can
exceed 1 will be analyzed:

φ2,3(t) =
vff

ωn
φyθ (t), φ3,2(t) = −

gvff

ωn
φyθ (t) (25)

φ1,3(t) =
vff ωff

ω2
n

φxθ (t), φ3,1(t) =
gvff ωff

ω2
n

φxθ (t) (26)

with

φyθ (t) =

sin

ωnt


1 − ζ 2



1 − ζ 2

e−ζωnt

φxθ (t) =


ζ

1 − ζ 2
sin

ωnt


1 − ζ 2


− cos


ωnt


1 − ζ 2


× e−ζωnt + e−2ζωnt .

The maximum in (23) is also the maximum of |φyθ (t)| for t ≥ 0.
It is the largest for ζ = 0 (value of 1) and then monotonically
decreases with ζ . The closed-form solution for the maximum of
|φxθ (t)| cannot be found analytically. However, it is easy to see that
the maximum again decreases monotonically with ζ . It starts with
2 at ζ = 0. It can be shown numerically that |φxθ (t)| < 1, t > 0
for ζ > 0.174. The maximal values of vff

ωn
and gvff

ωn
in (25) are

1/
√
g and

√
g , respectively, and are obtained when ωff = 0 (the

trajectory is straight). The maximal values of vff ωff

ω2
n

and gvff ωff

ω2
n

in
(26) are 1/(2

√
g) and

√
g/2, respectively, and are obtained when

ω2
ff = gv2

ff .
If there are many vehicles where the following vehicle tracks

the path of the preceding one, it is very important that the elements
of the state transition matrix are always less that 1 in magnitude.
Intuitively, this will make the errors decrease along the platoon.
The above analysis has shown that this could be achieved by
selecting ζ high enough (at least ζ > 0.174) and by selecting g
close to 1. Selecting g too high will reinforce the errors from ex
and ey to eθ (|φ3,2(t)| and |φ3,1(t)| exceed 1) while selecting it too
low will strengthen the error transition in the opposite direction
(|φ2,3(t)| and |φ1,3(t)| exceed 1).

The above analysis only treated a very simplified case of
a linearized model with constant reference velocities. But in
practical implementation we are always faced with sensors
producing noisy measurements in discrete time samples and with
delay, complex trajectories, imperfect contact between the wheel
and the ground etc. In the disturbance-free case the convergence
of errors to 0 is achieved even if |φi,j(t)| > 1 on a certain
time interval. However, when the persistent modelling errors due
to the difficulties mentioned above are present, these drastically
influence the robot tracking capability. If |φi,j(t)| > 1 on some
time interval, then the persistent tracking errors are amplified
by the control loop. The tracking errors thus accumulate through
the platoon which can eventually lead to instability. Especially
important are the discretization and the delay that add some
extra phase lag in each control loop making it more oscillatory. It
is virtually impossible to estimate how many robots are needed
for the instability to occur since it largely depends upon bad
conditions. Perhaps, it has to be stressed that the main source
of the problems is usually error accumulation on eθ to the point
where controller is not continuous with respect to eθ because of
projecting it onto the interval (−π, π]. Even if the projection is
not performed, such quick rotations of the robotmake it practically
useless.

5. Results of the experiment and simulations

The proposed algorithm for linear platoon control was tested
on simulations and experimentally on different real mobile robot
platforms.

5.1. Robot platoon using a stereo camera

The experimental environment is seen in Fig. 2 where the
following robot—Pioneer 3AT (the bigger one) must follow the
travelled path of the leading robot (the smaller one) considering
the required safety distance L. The follower measures the distance
D and the relative orientation θa to the leader using stereo camera
sensor (Bumblebee2, Point Gray Research). The leading robot has
a cylinder with red color marker attached in order to be seen by
the following robot’s stereo camera. The leading robot is controlled
using nonlinear controller (7) to follow the reference trajectory

xr(t) = 1.5 sin

2π t
40


, yr(t) = 1.1 sin


4π t
40


(27)

where t ∈ [0, 40] s. The tuning parameters of nonlinear control (7)
for the leader are selected as ζ = 0.9 and g = 30. The leading robot
position is sensed by the camera on the ceiling (Basler A311fc, see
the right part of Fig. 2).
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Fig. 3. Stereo camera configuration with left and right image plane.

The follower follows the path of the leading robot only by
measured relative information D and θa to the leading robot.
The position of the leading robot is not known to the follower,
nevertheless it can be calculated using known D and θa and
estimated position of the following robot using relations (8) and
(9). The follower uses control law (7) to follow the reference (path
of the leader) estimated using (14), the tracking error is calculated
according to Eq. (5) and feed-forward control signals are calculated
using relations (15) and (16). The parameters of the nonlinear
control (7) for the follower are selected as ζ = 0.9 and g = 4.

As already mentioned, the distance D and relative orientation
θa to the leader are estimated using stereo camera sensor where
the procedure is as follows: The red color marker on the leader is
recognized on the left and on the right color image of the camera.
Recognition is based on known color information of themarker and
known size. The result of the recognition are coordinates (row r
and column c) of the marker in the left and the right image frame
coordinates (cL, rL) and (cR, rR), respectively. From this information
and known configuration of the stereo camera shown in Fig. 3 the
position of themarker in the stereo camera coordinate system [24]
is obtained by

xS =
If
d

yS = −
I(cR − c0)

d
−

I
2

zS = −
I(rR − r0)

d

(28)

where d = cL − cR is disparity, f is the focal distance and I is
the distance between left and right camera. Finally the required

relative information is obtained by D =


(xS + xoff)2 + y2S , θa =
arctan


yS
xS+xoff


, where xoff is the offset in x direction measured

between robot frame (center of the robot) and stereo camera
frame.

The results of the experiment are given in Fig. 4, where it can be
seen that the leading robot follows the reference trajectory very
accurately. The following robot follows the path of the leading one
where smaller deviations from the leading robot path are due to
odometry error position estimates, system delays, noise of stereo
camera and the recognition algorithm. Due to nonholonomic
constraints it is not possible to simultaneously suppress errors
in orientation and in lateral direction (eθ and ey in relation (5)).
Also the kinematics of the Pioneer 3AT mobile robot can only
be approximated by kinematics of differential mobile robot type,
since the wheels of the Pioneer 3AT (four wheels) must slide in
order to control its orientation. When the robot needs to change
its orientation its wheels need to slide on the ground and therefore
the robot motion is not completely deterministic due to different
grip of the wheels, dirt on the ground, etc. This, however, is a more
demanding task as in differential mobile robot case. Nevertheless,
the following robot can follow the leading robot satisfactorily (left
part of Fig. 4) with maintaining the safety distance (right part of
Fig. 4) which is close to the required one (L = 0.6 m). The control
signals for the leading robot and the following robot are shown in
Fig. 5. The control signals contain some noise which is again due
to the influence of different noise sources, sensors, wheel slipping
and the like.

5.2. Simulations of a large platoon

The effect of error propagation through the number of
robots in the platoon analyzed in Section 4 is demonstrated by
simulating the platoon of a large number of differential robots.
Two different platoon approaches were simulated and compared,
namely constant inter-vehicle distance and constant inter-vehicle
timedelay. In both cases the platoon control strategy is as proposed
in Section 3. The leading robot is controlled using nonlinear
controller (7) to follow the reference trajectory

xr(t) = 0.5 sin

2π t
30


, yr(t) = 0.5 sin


4π t
30


(29)

where t ∈ [0, 30] s. The tuning parameters of nonlinear control (7)
for the leader and the follower robots are selected as ζ = 0.9 and
g = 50.

Resulting trajectories of an eight-robot platoon with constant
distance approach are shown in Fig. 6. Here it can be seen that
robot trajectories diverge from the reference trajectory although
no noise and initial posture errors are present. This is also seen
from the table of summed squared tracking errors (Table 1).
Fig. 4. Results of the experiment with two real robot platoon: robot’s trajectory (left) and distance between the robots (right).
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Fig. 5. Tangential and angular velocity for the leading robot (left) and for the following robot (right).
Table 1
Comparison of the sum of the squared tracking errors over the whole path and for each robot in the platoon.

Approach SSE1 SSE2 SSE3 SSE4 SSE5 SSE6 SSE7 SSE8 SSE9 SSE10

const. distance 0.342 2.548 2.768 4.075 6.388 8.260 8.340 9.641 – –
const. time 0.342 0.682 1.048 1.415 1.706 1.957 2.199 2.437 2.678 2.920
Fig. 6. A platoon of eight robots using constant inter-vehicle distance (L = 0.2 m).
Reference trajectory is shown with a dashed line.

Nevertheless constant vehicle spacing platoon results are still
usable for a limited number of robots (eight in our case). If adding
additional robots (nine or more), the resulting behaviour of those
additional robots is unstable.

Resulting trajectories of a ten-robot platoonwith constant time
approach are shown in Fig. 6. Here it can be seen that all ten robots
drive much closer to the reference trajectory as in the constant
distance case which is also seen in a smaller error accumulation
in Table 1. The robots inter-vehicle distance here varies with the
robot speed—the higher the speed, the higher the distance among
them. Usually speed profile is selected to adapt to the trajectory
curvature. When curvature is high, the speed is low and vice versa.
This enables a better trajectory tracking because the speed is lower
in curvy parts and the used controller (7) dynamics can follow
trajectory better (see Fig. 7).

6. Conclusion

A local control strategy for the control of vehicle platoons is
proposed where the following vehicle only has information about
its own orientation and about the distance and azimuth of the
leading vehicle. Its own position is determined using odometry.
Fig. 7. A platoon of eight robots using constant inter-vehicle time (Tf = 1 s).
Reference trajectory is shown with a dashed line.

It calculates the reference path in a parametric polynomial
form, and the parameters of the polynomials are determined by
the least-squares method. Having the reference path, the feed-
forward and feed-back control are applied to the following vehicle.
The proposed algorithm was tested on an experimental set-up
consisting of two different mobile robot types: a differential two-
wheel robot and an outdoor four-wheel robot. The objective of
the experiment and simulation analysis is to demonstrate the
ability of the proposed algorithm to effectively drive vehicles in
a platoon with either constant inter-vehicle distance or constant
inter-vehicle time approach. Constant time approach is more
appropriate for a large number of vehicles platoon due to slower
error accumulation. This confirms the theoretical results from the
literature.

The analysis of error accumulation was also performed. The
results have shown the increase of error with the increasing
number of vehicles in the platoon. In the case of a long train
of vehicles another problem occurs, namely string stability. The
maximum number of vehicles that still enables a satisfactory
behaviour depends on many factors such as level of noise in
measurements, delay in measurements, discretization time, shape
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of trajectories, unmodelled dynamics, wheel slipping and control
parameters. Some guidelines on choosing the appropriate control
parameters are given in the paper.
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